

Page 2 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

1st Edition 30 September 2007 PRELIMINARY EDITION

2nd Edition 15 Jannuary 2009

© Copyright: Aanderaa Data Instruments AS

Contact information:

Aanderaa Data Instruments AS

PO BOX 34, Slåtthaug

5851 Bergen, NORWAY

Visiting address:

Nesttunbrekken 97

5221 Nesttun, Norway

TEL: +47 55 604800

FAX: +47 55 604801

E-MAIL: info@aadi.no

WEB: http://www.aadi.no

Comment [JLH1]: Must be
updated

January 2009 – TD278 AADI Real-Time Programming Reference Page 3

Reliable solutions

Table of Contents

Introduction..4

Purpose and scope ...4

Document Overview..4

Applicable Documents ..4

CHAPTER 1 Introduction...5

CHAPTER 2 Collector Client Interface ..6

2.1 Example Client application..6

2.2 Establishing contact with the Collector ...7

2.2.1 Connection dialogs ..8

2.2.2 Manual configuration..8

2.2.3 Collector configuration ...8

2.3 Subscribing to a device connection ..9

2.4 Reading data from the Collector ...10

2.4.1 Data messages ..10

2.4.2 Error, Notification and Event messages ..11

2.5 Using the XML message...11

CHAPTER 3 Remote Client class library...11

Page 4 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

Introduction

Purpose and scope

The purpose of this document is to describe how to connect to the AADI Real-Time Collector
through .NET remoting techniques.

Document Overview

CHAPTER 1 gives a short introduction.

CHAPTER 2 describes the AADI Real-Time Collector Client interface.

CHAPTER 3 describes the Remote Client class.

Applicable Documents

TD262a SEAGUARD® Platform Operating Manual

TD267a AADI Real-Time Output Protocol

TD267b AADI Real-Time Output Protocol – Diagram View

TD268 AADI Real-Time Collector Users Manual

TD271 AADI Real-Time Communication

TD272 AADI Real-Time Control Protocol – Diagram View

January 2009 – TD278 AADI Real-Time Programming Reference Page 5

Reliable solutions

CHAPTER 1 Introduction

The AADI Real-Time Collector allows custom clients to connect to the application using .NET
remoting techniques. When connected, the client can choose to subscribe to one or more of the
available connections, which gives access to a range of alternatives for retrieving messages and
other information from the AADI Real-Time Collector.

In a typical scenario, a client would subscribe to a particular device connection, and then contact
the Collector periodically and request new unread messages. If available, the Collector returns
unread messages, which the client might want display to a user, or perhaps store in a database.

A connected client application has access to an exclusive message queue for each subscribed
device connection. When one client application retrieves messages from the queue, other client
applications subscribing to the same device connection will not be affected.

By default, 10 client applications can subscribe to each of the available connections. The
Collector always keeps track of all connected clients, and removes those who have not been
active for a certain period of time (1 hour by default).

Two .NET class libraries are provided to aid in the implementation of client applications. Both
are found in the folder where the AADI Real-Time Collector is installed (typically C:\Program
Files\AADI\AADI Real-Time Collector).

The Collector Client Interface class library provides four interfaces through which all remote
communication with the Collector must pass, in addition to classes that represent the various
messages from the connected device. The class library is further described in CHAPTER 2.

The Remote Client class library provides a single class Client, which aims to ease the task of
subscribing and unsubscribing to a device connection, as well as reading messages from the
device. This class is further described in CHAPTER 3.

Page 6 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

CHAPTER 2 Collector Client Interface

Classes and interfaces exposed to connected client applications are defined in the class library
AADI.Realtime.Collector.ClientInterface.dll, found in the folder where the AADI Real-Time
Collector is installed (typically C:\Program Files\AADI\AADI Real-Time Collector).

All remote communication with the Collector must pass through the interfaces exposed in this
class library.

The exact client interface structure is formally described in an MSDN-style document which can
be found in <Collector install folder>/Client API Documentation, while this document provides
an overview of the classes and their usage.

2.1 Example Client application

The console application provided below is a fully functional, but very basic way to connect to
the AADI Real-Time Collector. Note that a real application would also need exception handling.
Each part of the example is further described later in this chapter.

using System;

using System.Threading;

using AADI.Realtime.Collector;

class BasicConsoleClient

{

 static void Main(string[] args)

 {

 // Connect to the AADI Real-Time Collector.

 ICollectorServer remoteServer =

 CRemoteConnection.Configure("http://localhost", "51478");

 // Obtain list of available connections.

 CConnectionInfo[] connectionList =

 remoteServer.GetAvailableConnections();

 // Retrieve the connection Id of the first connection in the list.

 string connectionId = connectionList[0].ConnectionId;

 // Subscribe to this connection.

 string clientId = remoteServer.Subscribe(connectionId,

 new CSubscriptionRequest("Basic Console Client"), false);

 // Aquire access to the data channel.

 IDataChannel remoteDataChannel =

 CRemoteConnection.GetObject<IDataChannel>();

 // Continuously print the last message to the console.

 while (true)

 {

 CDataMessage message = remoteDataChannel.GetNext(connectionId,

 clientId);

 if (message != null) Console.WriteLine(message.XmlData);

 Thread.Sleep(500);

 }

 }

}

January 2009 – TD278 AADI Real-Time Programming Reference Page 7

Reliable solutions

A few notes on the above example:

• One class library must be referenced; AADI.Realtime.Collector.ClientInterface (found in
the AADI Real-Time Collector install folder). The namespace

AADI.Realtime.Collector is then included with the using directive.

• In order to establish contact with the server, we use the provided helper class

CRemoteConnection. The Configure method sets up the remoting configuration,

and returns a reference to the ICollectorServer interface.

• GetAvailableConnections() returns a list of CConnectionInfo objects,

representing all available connections. Normally, you would use the properties in the

CConnectionInfo class to identify the desired connection, but in this case we simply

choose the first connection in the list.

• We then subscribe to the desired connection and store the returned Client ID. The Client
ID gives us access to a private message queue on this specific connection.

• Access to the data message queue is provided in the IDataChannel interface. We use

the GetObject method in the CRemoteConnection class to obtain a reference to

this interface.

• We are now able to read the message queue using one of the methods provided for that

purpose in the IDataChannel interface.

2.2 Establishing contact with the Collector

Normally, a client application would connect to the AADI Real-Time Collector using the

methods found in the static CRemoteConnection. This class contains an overloaded method

Configure, which is used to set up the remoting connection. The Configure method returns a

reference to the ICollectorServer interface.

• Configure() uses the settings defined in the application configuration file to set up

the remoting. An example of a typical configuration file is provided with the Collector,
and can be found in <Collector install folder>/Client API Documentation.

• Configure(string filename) reads the configuration from the specified file.

• Configure(string url, string port) uses the specified url and port number

to set up the connection (the application configuration file is not read).

• Configure(string url, string port, IChannel channel) uses the
specified url, port number and sink provider to set up the connection (the application
configuration file is not read).

// Connect to the AADI Real-Time Collector by specifing URL and port.

ICollectorServer remoteServer =

 CRemoteConnection.Configure("http://localhost", "51478");

Note that when configuring the remoting connection through a configuration file, the

Configure method can only be run once. Subsequent attempts at calling this method will raise

a RemotingException.

Page 8 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

2.2.1 Connection dialogs

The class library contains a ready-made user dialog, UserConnectDialog, which can be
used to establish contact with the Collector. It lets the user specify where the Collector is running
(on the same machine, in the local network or outside the local network) and on which port
(default is 51478). It attempts to establish contact by calling Configure(string url,
string port) with the user-specified URL port. If contact is established, the Boolean
property IsConnected will be true, and a reference to the ICollectorServer interface
can be obtained from the Server property in the form.

The dialog also allows the user to choose which device connection to subscribe to (if a
connection with the Collector has been established). Note however, that no actual subscription
request is sent. The calling code must read the connection information from the
ConnectionInfo property in the dialog and send the request after the dialog has been closed.

Another version of the dialog, AdministratorConnectDialog, also allows the user to
give the administrator password for the Collector. This password is read from the
AdministratorPassword property in the dialog, and can then included in the subscription
request.

Both dialogs can be inherited and modified as needed.

2.2.2 Manual configuration

The remoting infrastructure can also be set up manually. The following information is then
required by the connecting client application:

• How the remote object is marshalled to the client application:
AADI Real-Time Collector uses a marshal-by-reference (MBR) object, activated as a
singleton well-known object (WKO).

• The types of the remote objects:
AADI.Realtime.Collector.ICollectorServer, AADI.Realtime.Collector.ClientInterface
AADI.Realtime.Collector.IDataChannel, AADI.Realtime.Collector.ClientInterface

AADI.Realtime.Collector.IServiceChannel, AADI.Realtime.Collector.ClientInterface

AADI.Realtime.Collector.IControlChannel, AADI.Realtime.Collector.ClientInterface

• The communications protocol used:
The default communication protocol is http on a binary channel.

• The URI of the remote object:
The default URI’s are CollectorServer.rem, DataChannel.rem, ServiceChannel.rem and

ControlChannel.rem.

• The IP port on which the server is listening to incoming connections:
The default IP Port is 51478.

• Additionally, the user will need to reference the class library:
AADI.Realtime.Collector.ClientInterface.dll.

2.2.3 Collector configuration

The AADI Real-Time Collector remoting is set up using the application configuration file, with
the default values mentioned above. In rare cases, the default port 51478 may be occupied by

January 2009 – TD278 AADI Real-Time Programming Reference Page 9

Reliable solutions

another process on the computer. It will then be necessary to choose different port, which can be
achieved by manually editing the application configuration file (AADI Real-Time

Collector.exe.config) located in the installation folder.

 <system.runtime.remoting>

 ...

 <!—- Set the server port here -->

 <channel ref="http" port="51478" />

...

 </system.runtime.remoting>

The port number may be changed to any valid, unassigned port number, although we recommend
choosing a number in the range 49152–65535. These ports are referred to as Dynamic and/or

Private Ports, and are not used by any defined application.

If the server port is changed, any client applications connected to the server will need to change
its settings accordingly.

The .NET remoting server is automatically configured and started when the AADI Real-Time

Collector application is launched. Except for the rare cases when the port number must be
changed, no configuration or other action is required in the Collector.

2.3 Subscribing to a device connection

Clients that wish to read data from a device needs to subscribe to the corresponding device
connection. This can be done after contact has been established with the Collector. Use the

method GetAvailableConnections in the ICollectorServer interface to retrieve a

list of CConnectionInfo objects, which represents the available connections.

// Obtain list of available connections.

CConnectionInfo[] connectionList = remoteServer.GetAvailableConnections();

Subscribe to any of the connections by using the Subscribe method in the

ICollectorServer interface. This method takes three arguments:

• The connection ID (string), as read from the CConnectionInfo object.

• An instance of the CSubscriptionRequest class. This object is used to specify a
client name, and possibly to request administrator access.

• A Boolean value indicating if the current contents of the various messages queues should
be available to the subscriber, or if all queues should start out empty.

The method returns a client ID which must be used to identify the caller in all subsequent
requests to the server.

// Subscribe to this connection as an administrator.

string clientId = remoteServer.Subscribe(connectionId,

 new CSubscriptionRequest("Remote Client", EAccessLevel.Administrator,

 "password"), false);

Page 10 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

Note! It is important to call Unsubscribe when the client application is closing down.

Otherwise the client will remain registered with the Collector for the remainder of the timeout
period (default 1 hour), potentially blocking other clients from connecting (if the user limit has
been reached).

// Unsubscribe to the connection.

m_CollectorServer.Unsubscribe(connectionId, clientId);

2.4 Reading data from the Collector

Each client connected to the Collector has exclusive access to four message queues for each
connection. Messages can be fetched at any desired frequency without disturbing other clients.

Each message queue holds the last 50 messages of its particular type, and keeps track of which
messages that have already been read by client. All 50 messages are however still available if a
client would like to read from the queue more than once.

The number of messages in the queues can be set in the connection settings in the Collector.

2.4.1 Data messages

All non-polled messages from the device that contain measurement data are referred to as data
messages.

Data messages can be read using the methods in the IDataChannel interface exposed by the

Collector. A reference to this interface is obtained calling the generic GetObject method in

the CRemoteConnection class. Note that this will only work if one of the Configure

methods in CRemoteConnection was used to set up the remoting connection.

// Aquire access to the data channel.

IDataChannel remoteDataChannel = CRemoteConnection.GetObject<IDataChannel>();

Messages are read using any combination of four available methods.

• GetNext returns the next unread message from the data queue, or null if no unread

message is available.

• GetMostRecent returns the most recent data message, even if it has been read before.

Will only return null if the queue has always been empty.

• GetUnread returns an array of all unread messages from the data queue, or null if no
unread messages are available.

• GetAll returns all messages in the data queue (default is 50 when the queue is full),

even if they have been read before. Will only return null if the queue has always been

empty.

// Get the next unread data message from the Collector

CDataMessage message = remoteDataChannel.GetNext(connectionId, clientId);

January 2009 – TD278 AADI Real-Time Programming Reference Page 11

Reliable solutions

The interface also includes a method GetNumberLost which returns the number of messages

that have been lost due to queue overflow since the last read operation.

2.4.2 Error, Notification and Event messages

The three remaining queues hold error, notification and event messages, and can be accessed

through methods in the IServiceChannel interface. Note that this will only work if one of

the Configure methods in CRemoteConnection was used to set up the remoting
connection.

// Aquire access to the service channel.

IServiceChannel remoteServiceChannel =

 CRemoteConnection.GetObject<IServiceChannel>();

The notification message queue holds notifications from the device, and is accessed using the

methods GetNextNotification, GetMostRecentNotification,

GetUnreadNotifications and GetAllNotifications.

// Get the next unread notification message from the Collector

CDataMessage message = remoteDataChannel.

 GetNextNotification(connectionId, clientId);

The error queue holds various error messages from the Collector.

The event queue holds Collector events, represented by a value in the ECollectorEvent

enumeration. For example, when a new data message is available, an

ECollectorEvent.NewDataMessage value is placed in the event queue (along with the

data message in the data queue). This queue is typically used to avoid having to constantly poll
the other three queues. By polling only the event queue, a client will not need to access the other
queues unless a new message is actually available (as indicated by a new entry in the event
queue).

2.5 Using the XML message

The AADI Real-Time Collector Interface returns data messages as XML strings, wrapped in a

CDataMessage object. The XML string can be deserialized using the static Deserialize

method in the Device class, which returns a Device object. The entire message structure, as
defined in the AADI Real-Time Protocol, can then be easily accessed and modified through
properties in this object.

Similarily, the Serialize method in the Device class returns a string containing the

serialized device message structure.

CHAPTER 3 Remote Client class library

The Remote Client class library, AADI.Realtime.RemoteClient.dll, can be found in the folder
where the AADI Real-Time Collector is installed (typically C:\Program Files\AADI\AADI Real-
Time Collector).

Page 12 January 2009 – TD278 AADI Real-Time Programming Reference

AANDERAA DATA INSTRUMENTS

It provides a single class Client, which greatly simplifies many of the operations described in the
previous chapter.

Further documentation of the class library can be found in <Collector install folder>/Client API

Documentation.

